要训练tensorflow版的mobilenetssd,首先要进行搭建网络环境,本文使用的系统环境为ubuntu18.04,然后进行搭建,tensorflow环境,这里tensorflow-gpu版的环境搭建,进行简单介绍,还是很容易进行搭建的,不需要编译等复杂操作,只需要几个命令既可以,在这之前,是需要进行安装conda的。 一,环境搭建安装conda,这个可以参考其他博客,然后进行安装以下软件包 #安装
conda install cudatoolkit = 10.0 cudnn=7.6 tensorflow-gpu=1.15
具体安装如图所示:
conda 安装的部分软件 tensorflow环境安装好后,进行制作自己的tfrecord数据集: 首先启动虚拟环境,source activate mobilenetssd 二,数据集制作准备自己的voc数据集,即xml文件和图片文件,也就是标记好的样本 新建文件 train_test_split.py将样本进行切割划分,分别为train,test,validition三部分。 训练验证集占80%,测试集占20%。训练集占训练验证集的80% 。分别存到指定文件夹下: import os
import random
import time
import shutil
xmlfilepath=r'./Annotations'
saveBasePath=r"./Annotations_save"
trainval_percent=0.8
train_percent=0.8
total_xml = os.listdir(xmlfilepath)
num=len(total_xml)
list=range(num)
tv=int(num*trainval_percent)
tr=int(tv*train_percent)
trainval= random.sample(list,tv)
train=random.sample(trainval,tr)
print("train and val size",tv)
print("train size",tr)
start = time.time()
test_num=0
val_num=0
train_num=0
for i in list:
name=total_xml[i]
if i in trainval: #train and val set
if i in train:
directory="train"
train_num += 1
xml_path = os.path.join(os.getcwd(), 'Annotations_save/{}'.format(directory))
if(not os.path.exists(xml_path)):
os.mkdir(xml_path)
filePath=os.path.join(xmlfilepath,name)
print(filePath)
newfile=os.path.join(saveBasePath,os.path.join(directory,name))
shutil.copyfile(filePath, newfile)
else:
directory="validation"
xml_path = os.path.join(os.getcwd(), 'Annotations_save/{}'.format(directory))
if(not os.path.exists(xml_path)):
os.mkdir(xml_path)
val_num += 1
filePath=os.path.join(xmlfilepath,name)
print(filePath)
newfile=os.path.join(saveBasePath,os.path.join(directory,name))
shutil.copyfile(filePath, newfile)
else:
directory="test"
xml_path = os.path.join(os.getcwd(), 'Annotations_save/{}'.format(directory))
if(not os.path.exists(xml_path)):
os.mkdir(xml_path)
test_num += 1
filePath=os.path.join(xmlfilepath,name)
newfile=os.path.join(saveBasePath,os.path.join(directory,name))
shutil.copyfile(filePath, newfile)
end = time.time()
seconds=end-start
print("train total : "+str(train_num))
print("validation total : "+str(val_num))
print("test total : "+str(test_num))
total_num=train_num+val_num+test_num
print("total number : "+str(total_num))
print( "Time taken : {0} seconds".format(seconds))
分好的样本 如上图:Annotations为xml文件,Annotations_save,为分类保存的文件,其下面有test,train,validation三个文件夹。 新建xml_to_csv.py 再进行制作csv文件, import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET
def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
print(root.find('filename').text)
for member in root.findall('object'):
value = (root.find('filename').text,
int(root.find('size')[0].text), #width
int(root.find('size')[1].text), #height
member[0].text,
int(member[4][0].text),
int(float(member[4][1].text)),
int(member[4][2].text),
int(member[4][3].text)
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df
def main():
for directory in ['train','test','validation']:
xml_path = os.path.join(os.getcwd(), 'Annotations_save/{}'.format(directory))
xml_df = xml_to_csv(xml_path)
xml_df.to_csv('./my.csv', index=None)
#xml_df.to_csv('/home/lijingle/sdb/mobilenetssdtrafficlight_{}_labels.csv'.format(directory), index=None)
print('Successfully converted xml to csv.')
main()
最后制作tfcord文件,新建文件 generate_tfrecord.py #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 5 15:28:55 2019
@author: z
"""
"""
Usage:
# From tensorflow/models/
# Create train data:
python generate_tfrecord.py --csv_input=data/tv_vehicle_labels.csv --output_path=train.record
# Create test data:
python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=test.record
"""
import os
import io
import pandas as pd
import tensorflow as tf
from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict
/*保存文件路径*/
os.chdir('/home/lijingle/deep_work/2Dimage/mobilenetssd/models/research/')
flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS
# TO-DO replace this with label map
def class_text_to_int(row_label):
# 你的所有类别
if row_label == 'person':
return 1
else:
return None
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def create_tf_example(group, path):
with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
print(classes_text)
classes.append(class_text_to_int(row['class']))
print(classes)
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(_):
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
path = os.path.join(os.getcwd(), '/home/lijingle/sdb/JPEGImages_p_train')
examples = pd.read_csv(FLAGS.csv_input)
grouped = split(examples, 'filename')
num = 0
for group in grouped:
num += 1
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())
if (num % 100 == 0): # 每完成100个转换,打印一次
print(num)
writer.close()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print('Successfully created the TFRecords: {}'.format(output_path))
if __name__ == '__main__':
tf.app.run()
制作 _tfrecord 文件时需要用到一下命令: python generate_tfrecord.py --csv_input=/home/lijingle/sdb/mobilenetssd/my.csv --output_path=./trafficlight_train.tfrecord
##注意csv文件路径为绝对路径
至此对tfrecord文件制作完成。 参考:https://www.cnblogs.com/gezhuangzhuang/p/10613468.html
|